Photopyroelectric Spectroscopic Studies of ZnO-MnO2-Co3O4-V2O5 Ceramics
نویسندگان
چکیده
Photopyroelectric (PPE) spectroscopy is a nondestructive tool that is used to study the optical properties of the ceramics (ZnO + 0.4MnO(2) + 0.4Co(3)O(4) + xV(2)O(5)), x = 0-1 mol%. Wavelength of incident light, modulated at 10 Hz, was in the range of 300-800 nm. PPE spectrum with reference to the doping level and sintering temperature is discussed. Optical energy band-gap (E(g)) was 2.11 eV for 0.3 mol% V(2)O(5) at a sintering temperature of 1025 °C as determined from the plot (ρhυ)(2)versushυ. With a further increase in V(2)O(5), the value of E(g) was found to be 2.59 eV. Steepness factor 'σ(A)' and 'σ(B)', which characterize the slope of exponential optical absorption, is discussed with reference to the variation of E(g). XRD, SEM and EDAX are also used for characterization of the ceramic. For this ceramic, the maximum relative density and grain size was observed to be 91.8% and 9.5 μm, respectively.
منابع مشابه
Effect of Co3O4 doping on nonlinear coefficient in Zn-Bi-Ti-O varistor ceramics
In the ZnO based varistor, the improvement of nonlinear coefficient (α) and prevention of evaporation of Bi2O3 during heat treatments can be achieved by the addition of MnO2 or Co3O4. In this conjunction, it is proper to see the effect of these additives at different low mol percentage and sintering conditions to nonlinear coefficient improvement of the varistor ceramics. In this paper, the inv...
متن کاملElastic Properties of substituted 45S5 Bioactive Glasses and Glass - Ceramics
CuO, Fe2O3, MnO2 and ZnO substituted 45S5 bioactive glasses were prepared. Glass derived Bioactive Glass ceramics were obtained through controlled crystallization of bioactive glasses. The formed crystalline phases in bioactive glass ceramics were identified using X ray diffraction (XRD) analysis. Density and ultrasonic wave velocities of bioactive glasses and glass ceramics were measured and u...
متن کاملHierarchically Structured Co3O4@Pt@MnO2 Nanowire Arrays for High-Performance Supercapacitors
Here we proposed a novel architectural design of a ternary MnO2-based electrode - a hierarchical Co3O4@Pt@MnO2 core-shell-shell structure, where the complemental features of the three key components (a well-defined Co3O4 nanowire array on the conductive Ti substrate, an ultrathin layer of small Pt nanoparticles, and a thin layer of MnO2 nanoflakes) are strategically combined into a single entit...
متن کاملSelf-assembly formation of Bi-functional Co3O4/MnO2-CNTs hybrid catalysts for achieving both high energy/power density and cyclic ability of rechargeable zinc-air battery
α-MnO2 nanotubes-supported Co3O4 (Co3O4/MnO2) and its carbon nanotubes (CNTs)-hybrids (Co3O4/MnO2-CNTs) have been successfully developed through a facile two-pot precipitation reaction and hydrothermal process, which exhibit the superior bi-functional catalytic activity for both ORR and OER. The high performance is believed to be induced by the hybrid effect among MnO2 nanotubes, hollow Co3O4 a...
متن کاملRealizing the Embedded Growth of Large Li2O2 Aggregations by Matching Different Metal Oxides for High‐Capacity and High‐Rate Lithium Oxygen Batteries
Large Li2O2 aggregations can produce high-capacity of lithium oxygen (Li-O2) batteries, but the larger ones usually lead to less-efficient contact between Li2O2 and electrode materials. Herein, a hierarchical cathode architecture based on different discharge characteristics of α-MnO2 and Co3O4 is constructed, which can enable the embedded growth of large Li2O2 aggregations to solve this problem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2011